KudoZ home » English to Russian » Mathematics & Statistics

duality pairing

Russian translation: спаривание (двойственности)

Advertisement

Login or register (free and only takes a few minutes) to participate in this question.

You will also have access to many other tools and opportunities designed for those who have language-related jobs
(or are passionate about them). Participation is free and the site has a strict confidentiality policy.
GLOSSARY ENTRY (DERIVED FROM QUESTION BELOW)
English term or phrase:duality pairing
Russian translation:спаривание (двойственности)
Entered by: olganet
Options:
- Contribute to this entry
- Include in personal glossary

20:36 Oct 25, 2002
English to Russian translations [PRO]
Tech/Engineering - Mathematics & Statistics / math
English term or phrase: duality pairing
is the duality pairing for X1 and its dual functional space X2
Nik-On/Off
Ukraine
Local time: 09:32
спаривание двойственности между пространством x1 и двойственным к нему пространством x2
Explanation:
проконсультировалась со специалистом

--------------------------------------------------
Note added at 2002-10-26 20:12:43 (GMT)
--------------------------------------------------

Особый вклад Л. В. Канторовича - выделение в тридцатые годы прошлого века класса упорядоченных векторных пространств, в которых каждое порядково ограниченное множество имеет точную верхнюю и точную нижнюю границы. Эти пространства обладают рядом принципиально важных специфических свойств, позволивших предложить мощные новые методы исследования функциональных объектов, в том числе и классических. Теория таких пространств - их называют теперь пространствами Канторовича или K-пространствами - стала одним из основных разделов функционального анализа. Теории K-пространств была посвящена монография <<Функциональный анализ в полуупорядоченных пространствах>>, написанная Л. В. Канторовичем со своими учениками Б. З. Вулихом и А. Г. Пинскером и вышедшая в свет в 1950 году.

Л.В. Кантарович и линейное программирование.
Теория двойственности линейных пространств с конусом дает естественный язык для задач линейного программирования в пространствах произвольной ...
http://www.mathsoc.spb.ru/pantheon/kantorov/vershik.html -

Л. В. Канторович постоянно подчеркивал неразрывную связь теории K-пространств с теорией неравенств и экономической проблематикой. Последующие исследования многих авторов подтвердили, что идеи линейного программирования имманентны теории K-пространств в следующем строго математическом плане: выполнение в абстрактной математической структуре любого из принятых вариантов формулировок принципа двойственности с неизбежностью приводит к тому, что исходный объект является K-пространством. http://www.mathsoc.spb.ru/pantheon/kantorov/lvkumn.html

Однажды весной 1957 г. Г.Ш.Рубинштейн рассказал мне, что он наконец понял, как можно использовать теорему Л.В. о задаче Монжа (теперь ее называют задачей Монжа - Канторовича), доказанную им в заметке ДАН 1942 г. - а именно, как метрику Канторовича, т.е. оптимальное значение целевого функционала в транспортной задаче, использовать для введения нормы в пространстве мер и как критерий Л.В. становится теоремой двойственности с пространством функций Липшица.

--------------------------------------------------
Note added at 2002-10-26 20:18:38 (GMT)
--------------------------------------------------

При анализе различных моделей выбора оптимальных решений (в экономике, технике, военном деле) систематически возникают экстремальные задачи, в которых в отличие от классических экстремальных и вариационных проблем искомый экстремум достигается не во внутренних, а в граничных точках. Отдельные классы таких задач изучаются в линейном и выпуклом программировании, теории игр, динамическом и целочисленном программировании, а также в некоторых разделах теории функций и функционального анализа.
Еще в 1781 году выдающийся французский математик Г. Монж в связи с вопросом о наиболее рациональном перемещении земли из насыпи в выемку поставил следующую задачу: разбить два равновеликих объема на бесконечно малые части и сопоставить их между собой так, чтобы сумма произведений длин путей на объемы перемещаемых частей была наименьшей.
Доказательство гипотезы Г. Монжа , причем для существенно более широкого класса задач перемещения массы на выпуклом компакте в произвольном евклидовом пространстве, было получено сравнительно недавно, в 1950-х годах Л.В. Канторовичем , который был удостоен Нобелевской премии за цикл работ по математической экономике.
Практическое значение принципа двойственности связано с возможностью принимать реальные, обоснованные решения по корректировке намеченного оптимального решения экстремальных задач при выяснении тех или иных отклонений от заложенных в модель исходных данных.
Таким образом, понятие двойственности в теории линейного программирования позволяет с единых позиций устанавливать взаимосвязи для всех приемов и методов анализа моделей на чувствительность. На первых порах изучения линейного программирования понятие двойственности может показаться абстрактным и, следовательно, весьма непривычным. Только со временем это впечатление уступает место пониманию исключительной важности и полезности этого понятия.
http://www.mathsoc.spb.ru/pantheon/kantorov/lvkumn.html -

--------------------------------------------------
Note added at 2002-10-26 20:20:49 (GMT)
--------------------------------------------------

http://belovo.kemsu.ru/conferens/doklad_mat/gorbunov.html
Selected response from:

olganet
Local time: 02:32
Grading comment
Это - просто "спаривание", слово "двойственности" здесь redundant, как мне объяснили.
Спасибо
4 KudoZ points were awarded for this answer

Advertisement


Summary of answers provided
5дуальное спаривание для Х1 и его дуального функционального пространства Х2voloshinab
4спаривание двойственности между пространством x1 и двойственным к нему пространством x2
olganet
2двойная (двойственная)четность
mk_lab


  

Answers


1 hr   confidence: Answerer confidence 2/5Answerer confidence 2/5
двойная (двойственная)четность


Explanation:
.

mk_lab
Ukraine
Local time: 09:32
Works in field
Native speaker of: Native in RussianRussian, Native in UkrainianUkrainian
PRO pts in category: 170
Login to enter a peer comment (or grade)

2 hrs   confidence: Answerer confidence 4/5Answerer confidence 4/5
спаривание двойственности между пространством x1 и двойственным к нему пространством x2


Explanation:
проконсультировалась со специалистом

--------------------------------------------------
Note added at 2002-10-26 20:12:43 (GMT)
--------------------------------------------------

Особый вклад Л. В. Канторовича - выделение в тридцатые годы прошлого века класса упорядоченных векторных пространств, в которых каждое порядково ограниченное множество имеет точную верхнюю и точную нижнюю границы. Эти пространства обладают рядом принципиально важных специфических свойств, позволивших предложить мощные новые методы исследования функциональных объектов, в том числе и классических. Теория таких пространств - их называют теперь пространствами Канторовича или K-пространствами - стала одним из основных разделов функционального анализа. Теории K-пространств была посвящена монография <<Функциональный анализ в полуупорядоченных пространствах>>, написанная Л. В. Канторовичем со своими учениками Б. З. Вулихом и А. Г. Пинскером и вышедшая в свет в 1950 году.

Л.В. Кантарович и линейное программирование.
Теория двойственности линейных пространств с конусом дает естественный язык для задач линейного программирования в пространствах произвольной ...
http://www.mathsoc.spb.ru/pantheon/kantorov/vershik.html -

Л. В. Канторович постоянно подчеркивал неразрывную связь теории K-пространств с теорией неравенств и экономической проблематикой. Последующие исследования многих авторов подтвердили, что идеи линейного программирования имманентны теории K-пространств в следующем строго математическом плане: выполнение в абстрактной математической структуре любого из принятых вариантов формулировок принципа двойственности с неизбежностью приводит к тому, что исходный объект является K-пространством. http://www.mathsoc.spb.ru/pantheon/kantorov/lvkumn.html

Однажды весной 1957 г. Г.Ш.Рубинштейн рассказал мне, что он наконец понял, как можно использовать теорему Л.В. о задаче Монжа (теперь ее называют задачей Монжа - Канторовича), доказанную им в заметке ДАН 1942 г. - а именно, как метрику Канторовича, т.е. оптимальное значение целевого функционала в транспортной задаче, использовать для введения нормы в пространстве мер и как критерий Л.В. становится теоремой двойственности с пространством функций Липшица.

--------------------------------------------------
Note added at 2002-10-26 20:18:38 (GMT)
--------------------------------------------------

При анализе различных моделей выбора оптимальных решений (в экономике, технике, военном деле) систематически возникают экстремальные задачи, в которых в отличие от классических экстремальных и вариационных проблем искомый экстремум достигается не во внутренних, а в граничных точках. Отдельные классы таких задач изучаются в линейном и выпуклом программировании, теории игр, динамическом и целочисленном программировании, а также в некоторых разделах теории функций и функционального анализа.
Еще в 1781 году выдающийся французский математик Г. Монж в связи с вопросом о наиболее рациональном перемещении земли из насыпи в выемку поставил следующую задачу: разбить два равновеликих объема на бесконечно малые части и сопоставить их между собой так, чтобы сумма произведений длин путей на объемы перемещаемых частей была наименьшей.
Доказательство гипотезы Г. Монжа , причем для существенно более широкого класса задач перемещения массы на выпуклом компакте в произвольном евклидовом пространстве, было получено сравнительно недавно, в 1950-х годах Л.В. Канторовичем , который был удостоен Нобелевской премии за цикл работ по математической экономике.
Практическое значение принципа двойственности связано с возможностью принимать реальные, обоснованные решения по корректировке намеченного оптимального решения экстремальных задач при выяснении тех или иных отклонений от заложенных в модель исходных данных.
Таким образом, понятие двойственности в теории линейного программирования позволяет с единых позиций устанавливать взаимосвязи для всех приемов и методов анализа моделей на чувствительность. На первых порах изучения линейного программирования понятие двойственности может показаться абстрактным и, следовательно, весьма непривычным. Только со временем это впечатление уступает место пониманию исключительной важности и полезности этого понятия.
http://www.mathsoc.spb.ru/pantheon/kantorov/lvkumn.html -

--------------------------------------------------
Note added at 2002-10-26 20:20:49 (GMT)
--------------------------------------------------

http://belovo.kemsu.ru/conferens/doklad_mat/gorbunov.html

olganet
Local time: 02:32
Native speaker of: Native in RussianRussian
PRO pts in category: 8
Grading comment
Это - просто "спаривание", слово "двойственности" здесь redundant, как мне объяснили.
Спасибо
Login to enter a peer comment (or grade)

16 hrs   confidence: Answerer confidence 5/5
дуальное спаривание для Х1 и его дуального функционального пространства Х2


Explanation:
в математике есть такие термины - дуальность, дуальный

voloshinab
United States
Local time: 02:32
Works in field
Native speaker of: Native in RussianRussian, Native in UkrainianUkrainian
Login to enter a peer comment (or grade)




Return to KudoZ list


KudoZ™ translation help
The KudoZ network provides a framework for translators and others to assist each other with translations or explanations of terms and short phrases.



See also:



Term search
  • All of ProZ.com
  • Term search
  • Jobs
  • Forums
  • Multiple search