https://www.proz.com/kudoz/english-to-spanish/marketing-market-research/1033299-random.html

random

Spanish translation: aleatorio, hecho al azar

GLOSSARY ENTRY (DERIVED FROM QUESTION BELOW)
English term or phrase:random
Spanish translation:aleatorio, hecho al azar
Entered by: Manuel Hernández Cerezo

15:56 May 16, 2005
English to Spanish translations [Non-PRO]
Marketing - Marketing / Market Research
English term or phrase: random
Se trata de un cuestionario:
Contexto:
Q12. What are your 2 main reasons for visiting hertz.xx today?
Random
2 answers maximum

Compare prices with competitors 1
Look for special offers/discounts 2
Get a quote with no intention to complete a booking yet 3
Complete a booking for leisure 4
Complete a booking for business 5
Check out a Hertz offer/discount advertised on another website 6
Other (please specify) 7
Manuel Hernández Cerezo
Spain
Local time: 11:22
aleatorio, hecho al azar
Explanation:
Slds.
Selected response from:

Claudia Palmier
Argentina
Local time: 06:22
Grading comment
Muchas gracias.
4 KudoZ points were awarded for this answer



Summary of answers provided
5 +2aleatoriedad/ al azar
Gabriela Rodriguez
5por casualidad
Ernesto de Lara
4aleatorio
Raquel Fernández García
3aleatorio, hecho al azar
Claudia Palmier


  

Answers


2 mins   confidence: Answerer confidence 5/5 peer agreement (net): +2
aleatoriedad/ al azar


Explanation:
Suerte!!!!!!!!!

--------------------------------------------------
Note added at 4 mins (2005-05-16 16:00:37 GMT)
--------------------------------------------------

an·dom (răn\'dəm) pronunciation
adj.

1. Having no specific pattern, purpose, or objective: random movements. See synonyms at chance.
2. Mathematics & Statistics. Of or relating to a type of circumstance or event that is described by a probability distribution.
3. Of or relating to an event in which all outcomes are equally likely, as in the testing of a blood sample for the presence of a substance.

idiom:

at random

1. Without a governing.
randomness

In ordinary language, the word random is used to express apparent lack of purpose or cause. This suggests that no matter what the cause of something, its nature is not only unknown but the consequences of its operation are also unknown. The term randomness is often used synonymously with a number of measurable statistical properties, such as lack of bias or correlation, but has more recently been associated with deeper ideas in quantum physics and information theory.

Randomness versus unpredictability

Randomness should not be confused with unpredictability which is a related idea in ordinary usage, but unconnected mathematically, and (for many purposes) in physics. For instance, deterministic chaos deals with random phenomena which exhibit organized features at some levels. As another example, the increase of the world human population is quite predictable on average, but individual births and deaths cannot be accurately predicted with any precision in many cases; this small-scale randomness is found in almost all real-world systems, if not as strikingly. Ohm\'s law and the kinetic theory of gases are statistically reliable descriptions of the \'sum\' (ie, the net result or integration) of vast numbers of individual micro events, each of which are random and none of which are individually predictable. All we directly perceive is circuit noise and some bulk gas behaviors.

In some applications, both randomness (as tested statistically) and unpredictability are required, as for instance in most uses of cryptography. In other applications, such as many modeling or simulation applications, unpredictability is not only unnecessary, but may cause problems as for instance whilst repeating modeling runs during model \'acceptance tests\'.

Sensibly dealing with randomness is a seriously hard problem in modern science, mathematics, psychology and philosophy. Merely defining it adequately for the purposes of this or that discipline has been quite difficult. Distinguishing between apparent randomness and actual randomness has been no easier, and additionally assuring unpredictability, especially against a well motivated party (in cryptographic parlance, the \"Adversary\"), has been harder still.

Randomness in philosophy

Note that the bias that \"everything has a purpose or cause\" is actually implicit in the expression \"apparent lack of purpose or cause\". Humans are always looking for patterns in their experience, and the most basic pattern seems to be cause/effect. This appears to be deeply embedded in the human brain, and perhaps in other animals as well. For example, dogs and cats often have been reported to have apparently made a cause and effect connection that strikes us as amusing or peculiar. (See classical conditioning). For instance there is a report of a dog who, after a visit to a vet whose clinic had tile floors of a particular kind, refused thereafter to go near such a tiled floor, whether or not it was at a vet\'s.

It is because of this bias that the absence of a cause seems problematic. See causation.

To solve this \'problem\', random events are sometimes said to be caused by chance. Rather than solving the problem of randomness, this opens the gaping hole of defining chance. It is hard to avoid circularity by defining chance in terms of randomness.

Randomness in natural science

Traditionally, randomness takes on an operational meaning in natural science: something is apparently random if its cause cannot be determined or controlled. When an experiment is performed and all the control variables are fixed, the remaining variation is ascribed to uncontrolled (ie, \'random\') influences. The assumption, again, is that if it were somehow possible to perfectly control all influences, the result of the experiment would be always the same. Therefore, for most of the history of science, randomness has been interpreted in one way or another as ignorance on the part of the observer.

With the advent of quantum mechanics, however, it appears that the world might be irreducibly random. According to the standard interpretations of the theory, it is possible (and in fact very, very easy) to set up an experiment with total control of all relevant parameters, which will still have a perfectly random outcome. The resistance to this idea takes the form of hidden variable theories in which the outcome of the experiment is determined by certain unobservable characteristics (hence the name \"hidden variables\").

Many physical processes resulting from quantum-mechanical effects are, therefore, believed to be irreducibly random. The best-known example is the timing of radioactive decay events in radioactive substances.

Deviations from randomness are often regarded by parapsychologists as evidence for the theories of parapsychology.

Randomness in mathematics

The mathematical theory of probability arose from attempts to formulate mathematical descriptions of chance events, originally in the context of gambling but soon in connection with situations of interest in physics. Statistics is used to infer the underlying probability distribution of a collection of empirical observations. For the purposes of simulation it is necessary to have a large supply of random numbers, or means to generate them on demand.

Algorithmic information theory studies, among other topics, what constitutes a random sequence. The central idea is that a string of bits is random if and only if it is shorter than any computer program that can produce that string (Chaitin-Kolmogorov randomness). Pioneers of this field include Andrey Kolmogorov, Ray Solomonoff, Gregory Chaitin, Anders Martin-Löf, and others.

Randomness in practical communications and cryptography

Successful communication in the real world depends, at the limit, on understanding and successfully minimizing the deleterious effects of assorted interference sources, many of which are apparently random. Such noise imposes performance limits on any communications channel and it was the study of those limits which led Shannon to develop information theory, make fundamental contributions to communication theory, and establish a theoretical grounding for cryptography.

Access to a source of high-quality randomness is absolutely critical in many applications of cryptography. For example, even a subtly non-random key choice may result in a complete break into a communications channel that was believed to have been secure and was relied upon to be so. See the Enigma machine and one-time pad articles for examples of the consequences of such mis-estimates. Keys used for the Enigma were non-random in many cases which made it possible for Allied cryptanalysts to break into the traffic with substantial consequences for the Nazi war effort. A similar thing happened in the Pacific Theater of WWII with the Japanese \'Purple\' machine; its key selection was also insufficiently random. The key material used in the theoretically unbreakable one-time pad must be random and unpredictable lest the encryption technique become trivially breakable. Even a slight predictability of the key material used removes the one-time pad from the unbreakable category. The Colossus computer, the world\'s first programmable digital electronic computer, was developed to attack a mechanical (and subtly non-random) implementation of the one-time pad.

There are techniques for combining biased random data to produced higher quality randomness. The randomness inherent in some computer input output components allows enough entropy to be extracted for most cryptographic purposes. A greater concern is insuring that best practices are followed in actual systems and that random number generation is not subverted by attackers. See random number generator attack.

Randomness in gaming

Randomness is central to games of chance and vital to the gambling industry.

Random draws are often used to make a decision where no rational or fair basis exists for making a deterministic decision.

Randomness in music

Randomness in music is deemed postmodern, including John Cage\'s chance derived Music of Changes, Iannis Xenakis\' stochastic music, aleatoric music, indeterminate music, or generative music.

Randomness in humor

Randomness can also be found in humor, as when an event occurs with little or no connection with the plot or context. This form of humor can be found in such shows as Monty Python\'s Flying circus and the recent FOX phenomenon: Family Guy. Other shows are adopting this form of humor which seems to appeal to the current audience ( including most of the non-anime [Adult Swim] lineup ).

Other

Random is a vocal group in the Australian version of The X-Factor

Quotations

* \"Random numbers should not be generated with a method chosen at random.\" —Donald E. Knuth
* \"The generation of random numbers is too important to be left to chance.\" —Robert R. Coveyou
http://www.answers.com/random

Gabriela Rodriguez
Argentina
Local time: 06:22
Specializes in field
Native speaker of: Native in SpanishSpanish
PRO pts in category: 42

Peer comments on this answer (and responses from the answerer)
agree  Roxana Cortijo: : )
3 mins
  -> Hola Roxana, muchas gracias y te envío muchos saludos!!!!!

agree  Joaquim Siles-Borràs
5 mins
  -> Hola Joaquim, te agradezco y te mando muchos saludos!!!!!!!!!
Login to enter a peer comment (or grade)

6 mins   confidence: Answerer confidence 4/5Answerer confidence 4/5
aleatorio


Explanation:
Cuestionario aleatorio

Raquel Fernández García
Spain
Local time: 11:22
Native speaker of: Native in SpanishSpanish
Login to enter a peer comment (or grade)

1 hr   confidence: Answerer confidence 3/5Answerer confidence 3/5
aleatorio, hecho al azar


Explanation:
Slds.

Claudia Palmier
Argentina
Local time: 06:22
Native speaker of: Spanish
Grading comment
Muchas gracias.
Login to enter a peer comment (or grade)

1 hr   confidence: Answerer confidence 5/5
por casualidad


Explanation:
Asi deciamos los viejos

Ernesto de Lara
Local time: 02:22
Works in field
Native speaker of: Native in SpanishSpanish
PRO pts in category: 54
Login to enter a peer comment (or grade)



Login or register (free and only takes a few minutes) to participate in this question.

You will also have access to many other tools and opportunities designed for those who have language-related jobs (or are passionate about them). Participation is free and the site has a strict confidentiality policy.

KudoZ™ translation help

The KudoZ network provides a framework for translators and others to assist each other with translations or explanations of terms and short phrases.


See also: