Working languages:
English to Serbian
Serbian to English
Croatian to English

Nadezda Krstev
Responsible, reliable & strictly on time

Local time: 12:30 CEST (GMT+2)

Native in: Serbian Native in Serbian
  • Send message through ProZ.com
Feedback from
clients and colleagues

on Willingness to Work Again info
No feedback collected
Account type Freelance translator and/or interpreter
Data security Created by Evelio Clavel-Rosales This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Affiliations This person is not affiliated with any business or Blue Board record at ProZ.com.
Services Translation, Interpreting, Editing/proofreading, Subtitling, Project management
Expertise
Specializes in:
Environment & EcologyMetallurgy / Casting
Mining & Minerals / GemsGeneral / Conversation / Greetings / Letters
Construction / Civil EngineeringCertificates, Diplomas, Licenses, CVs
Law (general)Social Science, Sociology, Ethics, etc.

Rates
English to Serbian - Rates: 0.07 - 0.10 EUR per word / 30 - 50 EUR per hour
Serbian to English - Rates: 0.07 - 0.10 EUR per word / 30 - 50 EUR per hour
Croatian to English - Rates: 0.07 - 0.10 EUR per word / 30 - 50 EUR per hour
Bosnian to English - Rates: 0.07 - 0.10 EUR per word / 30 - 50 EUR per hour

KudoZ activity (PRO) Questions asked: 30
Portfolio Sample translations submitted: 2
Serbian to English: Fitohemijska analiza ekoloških osobina konoplje
Source text - Serbian
Konoplja je jedna od najotpornijih gajenih biljnih vrsta prema nepovoljnim agroekološkim uslovima. Tu svoju otpornost duguje svojim biološkim osobinama i sposobnošću prilagođavanja različitim ekološkim uslovima uspevanja. Zahvaljujući ovoj činjenici konoplju možemo smatrati »ekološkom biljnom vrstom«. Bitna biološka osobina koja utiče na otpornost konoplje prema nepovoljnim agroekološkim uslovima je i prisustvo čitavog niza hemijskih jedinjenja nazvanih kanabinoidima Od svih kanabinoida, kojih ima više od 60, najpoznatiji su 9-tetrahidrokanabinol (9-THC ili THC), kanabihromen (CBC), kanabidiol (CBD) i kanabigerol (CBG) (sl. 1). Biosinteza kanabinoida obavlja se u žlezdanim dlakama. Žlezdane dlake se sastoje iz višećeljiske drške i okrugle glave – proširenja koji služi kao rezervoar u kome se nagomilavaju smole sa kanabinoidima (sl. 2). Ove dlake locirane su po celom epidermisu kao epidermalne tvorevine. Njihov broj, odnosno gustina, nije ravnomeran po celoj površini biljaka već je najveća brojnost na ovojnim listićima (braktejama).



Fig. 1. Biosynthesis of cannabinoid acids (redrawn after Shoyama et al. 1975, cit. po Pate, 1994): 1. cannabigerol (CBG); 2. cannabidiol (CBD); 3. cannabichromene (CBC); 4. 9-tetrahidrokanabinol (THC)
sl. 1. Biosinteza kanabinoida (sastavljeno nakon Shoyama et al., 1975, cit. po Pate, 1994)): 1. kanabigerol (CBG); 2. kanabidiol (CBD); 3. kanabihromen (CBC); 4. 9-tetrahidrokanabinol

fig. 2. Resin-producing stalked glandular trichome (Briosi and Tognini, 1894, cit. po Pate, 1994).
sl. 2. Žlezdasta dlaka u kojoj se vrši biosinteza smola (Briosi ana Tognini, 1894, cit. Pate, 1994)



Kanabinoidi su jedinjenja bez mirisa. Budući (since) da se u žlezdanim dlakama obavlja biosinteza i nakupljanje i drugih materija, u prvom redu izvesnih smola, one biljkama daju karakterističan miris.
Ekološki i ekonomski aspekti proizvodnje i prerade stabla (5)

Pored velikog agrotehničkog zanačaja, konoplja ima i veliki privredni značaj. Naša zemlja je nekada bila veliki proizvođač ali i izvoznik konoplje (Lokot, 1936, Stanaćev, 1973). Danas, obzirom na marginalne površine pod konopljom, Srbija ne zadovoljava ni svoje potrebe za ovom veoma cenjenom industrijskom biljkom. Međutim, Berić (2000) iznosi podatke da bi smo mogli ponovo budemo vodeća zemlja u proizvodnji ali i izvozu prvenstveno prerađevina od vlakna konoplje.
Sa ekološkog aspekta bitna je činjenica da konoplja ima godišnji prirast od 7-8 m3/ha dok šume imaju 3,5-4 m3/ha drvene mase (Stanaćev, 1973). Ovo je bitna činjenica pri supstituciji drveta celuloznim sirovinama poreklom iz jednogodišnjih biljaka.
Tradicionalnim načinom ubiranja, čupanjem, zaostaje izvesna količina korena koji se može iskoristiti u domaćinstvu ili u industrijskim pogonima kao ogrevni materijal.
Izdvajanje vlakna može biti močenjem (kišeljenjem) ili mehaničkim putem. Mehanički izdvojeno vlakno se manje koristi u tekstilnoj industriji, već u daljoj industrijskoj preradi. Kišeljenje kao način prerade sa ekonomskog aspekta je nepovoljan iz razloga što od setve od prerađenog vlakna treba 18 meseci.
Pozder čini oko 65 - 70% mase staba. Pozder, ali i celo stablo nalazi primenu u proizvodnji celuloze, plastičnih masa, kartona i hartije slabijeg, ali i najboljeg kvaliteta. Pozder se može iskoristiti u građevinarstvu pri izradi termoizolacionog materijala i kao ogrevni materijal. Kalorijska vrednost pozdera (3.760 kcal/kg) je između kalorijske vrednosti najkvalitetnijih vrsta uglja (4.800 kcal/kg) i drveta (2.700 kcal/kg), Jevtić et al (1986). Sagorevanje pozdera moglo bi se izvesti metodom sagorevanja u fluidnom sloju. Već postoje tehnička rešenja za sagorevanje ovakvog i sličnih materijala (Grubor et al, 1997). Nakon sagorevanja pozdera zaostaje izvesna količina pepela koja se koristi kao mineralno đubrivo sa 3,60 - 4,85% P2O5, 5,60 - 6,30% K2O i 24,00 - 26,70% CaO, (Stanaćev, 1973, Jevtić et al. 1986).
U plevi ima oko 3% azota pa bi se sa 10 ha konoplje moglo prihraniti 1 ha pšenice.
Ekstrahovano vlakno u daljem postupku prerade oplemenjuje postupcima linizacije ili kotonizacije u cilju dobijanja prediva, dok se neoplemenjeno koristi u proizvodnji užarije i kao izolacioni materijal u vodoinstalacijama.
Ekonomski značaj proizvodnje i prerade zrna konoplje (6)

Kao biološki materijal, seme konoplje je vrlo osetljivo. Seme vrlo brzo gubi klijavost, tako da je već u drugoj ili trećoj godini potpuno neupotrebljivo za setvu. Životna sposobnost semena i klijanaca se smanjuje većom dubinom setve, obrazovanjem pokorice po površini zemljišta, smanjenjem vlažnosti setvenog sloja zemljišta i dr.
U skladištu seme konoplje podložno je kvarenju. Uzrok je u neprilagođenoj vlažnosti zrna (većoj od 13%) kao i u fizičkim uslovima samog skladišta (povećana temperatura i neprovetrenost). Velike štete mogu naneti skladišne štetočine. Zbog svojih organoleptičkih osobina (ukus na lešnik) zrno u skladištu najčešće napadaju razni glodari. Primećeno je da miševi prvo napadaju zrno konoplje pa tek potom zrno kukuruza.
U morfološkom smislu, plod konoplje je vrlo varijabilan i zavisi od genotipa. Varijabilnost se ogleda u boji, veličini i obliku.
Plod se odlikuje povoljnim sadržajem i kvalitetom ulja i belančevina. Po Stanaćevu (1973) u plodu se nalazi prosečno 18,23% belančevina i 32,58% ulja. Zrno je cenjena sirovina za dobijanje ulja, Karlović and Berenji (1996), Karlović et al (1996). Po Jevtić et al (1986) ceđenjem zrna se dobija oko23-29% ulja, a ekstrakcijom 30-32% ulja. Konopljino ulje pripada grupi lakosušivih ulja čiji je jodni broj 140-167.
Translation - English
Phyto-chemical analysis of environmental performances of hemp (3)

Hemp is one of the most resistant cultivated plants per unsuitable agro-ecological conditions. That resistance is I owes to its biological performances and to capability to adjust to different environmental conditions. In gratitude to this fact we can consider hemp to be “environmental plant”. Significant biological performance that influences hemp resistance towards unsuitable agro-environmental conditions is presence of whole specter of chemical compounds called cannabinoid Out of all of them, and there are more then 60, the most famous are 9-tetrahidrokanabinol (9-THC or THC), kanabihromen (CBC), kanabidiol (CBD) and kanabigerol (CBG) (pic. 1). Biosynthesis of cannabinoid is being done in gland hairs. Gland hairs are consisted of multi-cell stalk and round head – enlargement, which is used as reservoir where tar from cannabinoid being stored (pic. 2). These hairs are located all over the epidermis as epidermal creations. Their number, i.e. density, is not even on the whole surface of the plant, but the highest density is bractea leaves.



Fig. 1. Biosynthesis of cannabinoid acids (redrawn after Shoyama et al. 1975, cit. po Pate, 1994): 1. cannabigerol (CBG); 2. cannabidiol (CBD); 3. cannabichromene (CBC); 4. 9-tetrahidrokanabinol (THC)
sl. 1. Biosinteza kanabinoida (sastavljeno nakon Shoyama et al., 1975, cit. po Pate, 1994)): 1. kanabigerol (CBG); 2. kanabidiol (CBD); 3. kanabihromen (CBC); 4. 9-tetrahidrokanabinol

fig. 2. Resin-producing stalked glandular trichome (Briosi and Tognini, 1894, cit. po Pate, 1994).


Cannabinoids are compounds without smell. Since that in the glands biosynthesis is being done and collection of other material also, firstly some tar, they give characteristic smell to these plants.

Environmental and economic aspects of production and processing of stalk (5)

Beside big agro-technical significance, hemp has huge economic importance. Our country was once big manufacturer and exporter of hemp (Lokot, 1936, Stanaćev, 1973). Today, due to marginalized surfaces under the hemp, Serbian can no satisfy its own need for this highly respected plant. However, Berić (2000) presents data that we could again be a leading country in production but also in export of firstly products of hemp fibers.
From the environmental aspect one fact is very important and that is the hemp has annual growth of 7-8 m3/ha while foreste have 3,5-4 m3/ha of wood mass (Stanaćev, 1973). This is important fact in substitution of trees with cellulose raw materials that originate from annual plants.
Traditional way of picking, plucking leaves certain amount of root that can be used in households or in industry as heating material.
Fiber separation can be by welting or mechanical. Mechanically separated fiber is less used in textile industry, and more in further industrial processing. Welting as one way of processing is not very convenient from the economic aspect, because from the harvest until processed fiber 18 months are needed.
Splint is around 65 - 70% of tree mass. Splint but also the whole tree can be used in production of celluloses, plastic massed, cardboard and paper of weaker but the best quality. Splint can be used in construction as thermo-isolation material and as heating material. Caloric value of splint (3.760 kcal/kg) is between caloric value of the best quality coal (4.800 kcal/kg) and wood (2.700 kcal/kg), Jevtić et al (1986). Splint combustion could be done with the combustion method in fluid layer. There are already technical solutions for the combustion of this and similar materials (Grubor et al, 1997). After the combustion of splint there is certain amount of ash left, which is used as mineral fertilizer with 3,60 - 4,85% P2O5, 5,60 - 6,30% K2O i 24,00 - 26,70% CaO, (Stanaćev, 1973, Jevtić et al. 1986).
In the chaff we have around 3% of nitrogen and with 10 ha of hemp we could fertilize 1 ha of wheat.
Extracted fiber in the further processing is being enriched with processes of lionization or cotonisation with a goal to have yarn, while in un-enriched state it is used in the production of ropes and as isolation material in water supplies.

Economic value of production and processing of hemp grain (6)

As biological material, hemp seed is very sensitive. Seed looses germination very fast, so in second or third year it is completely unusable for harvesting. Life capability of the seed and germs decreases with deeper harvest, creation of crust on the surface of the earth, decrease in moisture of the harvest layer o soil and so on.
In the storage hemp seed is subject to spoilage. Cause is in maladjusted grain moisture (higher then 13%) and also in physical conditions of the storage itself (increase temperature and airless space). Storage pests can cause huge damage. Because they taste like hazelnut grains in storage are often attacked by different kinds of rodents. It is noticed that mice first attack hemp grains and then corn grains.
In morphological sense, hemp fruit is very variable and it depends of genotype. Variability is seen in color, size and shape.
Fruit is distinguished with favorable content and quality of oil and proteins. By Stanaćev (1973) in the fruit there is approximately 8,23% proteins and 32,58% oil. Grain is acknowledged raw material for oil production, Karlović and Berenji (1996), Karlović et al (1996). By Jevtić et al (1986) grain squeezing we get around 23-29% oil, and with extraction 30-32% oil. Hemp oil belongs to the group of easy dried oils, which iodine number is 140-167.
English to Serbian: Technological Innovation and the Need for Tech Mining
Source text - English
"Tech mining” is our shorthand for exploiting information about emerging technologies to inform technology management .

1.1. WHY INNOVATION IS SIGNIFICANT

We use “innovation” to mean technological change. We are concerned with technological change resulting in practical implementation or commercialization, not just idea generation. This section addresses the importance of technological
innovation to today’s competitive economy and polity.
Today’s worldwide economy depends on technology and technological innovation to an extraordinary degree:

• We perform a lot of research—for one thing, American companies
spend over $100 billion annually on R&D; for another data point, the Organisation for Economic Cooperation and Development (OECD) countries spent over $550 billion in 1999 (about 70% by companies, 30% by government).* That research pays off—participating companies in the U.S. Industrial Research Institute estimate average new sales ratio—the percentage of sales attributable to products newly designed in the past
five years—at roughly 35%. In other words, $1 of every $3 in their revenue comes from recent innovations.

2.6. WHERE IS TECH MINING MOST NEEDED?

The message is clear—managers need to consider how changing technology affects their business. Tech mining is certainly needed by anyone conducting innovative activities, defined broadly. Many companies depend on technological change to generate competitive products and services. They also need timely technology insertion to improve their processes.Additionally, academic researchers are significant contributors to the production of knowledge and face significant challenges in managing a runaway supply of science and technology information. National governments have strong needs for R&D—particularly with regard to health, defense, and economic competitiveness issues.
Changing technology poses concerns for many players, including:
• Technology-producing and science-based companies
• Companies that consume technology produced by others
• Companies that must assess the market value of other companies
• Government agencies, with interests ranging across research (U.S. National Institutes of Health) to operations (defense, World Health Organization) to regulation (state Environmental Protection Agencies)
• Universities
• Nonprofits (e.g., research, environmental, and policy organizations)

2.5. WHO DOES TECH MINING?

To sharpen our thinking as to what knowledge is needed, think in terms of tech mining users and doers. We look at the role of tech mining in organizations, large and small, private and public. Finally, we consider how tech mining should be performed in house by a single unit or distributed, or outsourced.
This book is for users as well as doers. Knowledgeable tech mining consumers will get more from tech mining, thereby strengthening the case for doing it. We largely assume that, for the present, users and doers are likely to be distinct, but we later explore the case where they are one and the same.
Translation - Serbian
“Teh istraživanja” je naša skaraćenica za korišćenje informacija o tehnologijama koje se pojavljuju da bi obavestili rukovodstvo tehnologije


1.1. ZAŠTO SU INOVACIJE VAŽNE

Koristimo “inovacije” kada mislimo tehnološke promene. Nas interesuje tehnološka promena koja rezultira u praktičnoj implementaciji ili komercijalizaciji, a ne samo stvaranje ideja. Ovaj deo se odnosi na važnost tehnoloških inovacija u današnjoj kompetitivnoj ekonomiji i politici. Danas ekonomija širom sveta zavisi od tehnologije i tehnoloških inovacija u velikoj meri:

• Vršimo puno istraživanja – prvo, Američke kompanije potroše preko $100 milijardi godišnje na istraživanje i razvoj; sledeći podatak, Organizacija za ekonomsku saradnju I razvoj (OECD) zemalja potroši preko $550 milijardi 1999 (oko 70% od strane kompanija, 30% od strane vlade).* To istraživanje isplaćuje kompanije koje učestvuju u istraživanjima. Industrijski Istraživački Institutu SAD-a procenjuje novi odnos prodaje – procenat prodaje pripisan novo dizajniranim proizvodima u proteklih pet godina je – grubo 35%. Drugim rečima $1 od svakih $3 u njihovom prihodu dolazi od skorašnjih inovacija.

2.6. GDE JE TEH ISTRAŽIVANJE NAJPOTREBNIJE?

Poruka je jasna—menadžeri treba da uzmu u obzir kako promena tehnologije utiče na njihov biznis. Teh rudarstvo je sasvim sigurno potrebno svakome ko izvršava inovativne aktivnosti, široko definisano. Mnoge kompanije zavise od tehnoloških promena da bi stvorili konkurentne proizvode i usluge. Takodje im je potrebno blagovremeno ubacivanje tehnologija da bi poboljšali svoje procese. Uz to, akademski istraživači značajno doprinose proizvodnji znanja i suoačavaju se sa značajnim izazovima u upravljanju ponuda informacija iz nauke i tehnologije. Nacionalne vlade imaju velike potrebe za R&D—naročito kada se odnose na zdravlje, odbranu i ekonomsku konkurentnost. Promena tehnologije predstavlja zabrinutost za mnoge učesnike, uključujući:
• Naučne i kompanije koje proizvode Tehnologiju
• Kompanije koje su potrašači tehnologija koje proizvode ostali
• Kompanije koje moraju da procenjuju tržišnu vrednost drugih kompanije
• Vladine agencije, sa interesima u istraživanjima (Nacionalni Institut zdravlja SAD-a), u operacijama (odbrana, Svetska Zdravstvena Organizacija) u propisima (državne Agencije Zaštite životne sredine)
• Univerziteti
• Neprofitne (t.j., ekološke, političke i organizacije koje se bave istraživanjima)
2.5. KO RADI TEH ISTRAŽIVANJA?

Da bi izoštrili naše razmišljanje ka tome koje je znanje potrebno, razmišljajmo o korsnicima i izvršiocima teh rudarstva. Sagledavamo ulogu teh rudarstva u organizacijama, velikim i malim, privatnim i državnim. Konačno, uzimamo u obzir kako teh istraživanja treba da se izvršava pojedinačnom jedinicom ili distribuirano. Ova knjiga je kako za korisnike tako i za izvršioce. Znastveni korisnici teh rudarstva dobiće više od teh rudarstva pa u vezi stim i jačaju slučaj za teh istraživanja. Pretpostavljamo da, za sada, korisnici i izvršioci su verovatno različiti, ali kasnije istražujemo slučaj gde su oni jedno te iste.


Experience Years of experience: 25. Registered at ProZ.com: Oct 2006.
ProZ.com Certified PRO certificate(s) N/A
Credentials N/A
Memberships N/A
Software Adobe Acrobat, Adobe Photoshop, Microsoft Excel, Microsoft Word, Powerpoint
CV/Resume English (DOC)
Bio
I have a very strong mining/metallurgy and environment protection background.
I lived and worked in UK for over 4 years and I have over 7 years of translating/interpreting experience in many different fields.
Currently I work as translator/interpretor in Municipality of town Bor, Serbia, in the environmental protection department.
Keywords: interpreting-consecutive, simultaneous, serbian-english, english-serbian translations, mining, metallurgy, law, contracts, birth, death. See more.interpreting-consecutive, simultaneous, serbian-english, english-serbian translations, mining, metallurgy, law, contracts, birth, death, marriage certificates, engineering, education, environment, tourism, marketing research, translating from cyrillic alphabet. See less.


Profile last updated
Aug 20, 2010