This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
Farsi (Persian) to English Farsi (Persian) to Azerbaijani Farsi (Persian) to Turkish Azerbaijani to English Turkish to English English to Azerbaijani Turkish to Azerbaijani English to Turkish Azerbaijani to Turkish English to Persian (Farsi) Azerbaijani to Persian (Farsi) Turkish to Persian (Farsi) Persian (Farsi) to English Persian (Farsi) to Azerbaijani Persian (Farsi) to Turkish Farsi (Persian) (monolingual) Persian (Farsi) (monolingual) English (monolingual) Azerbaijani (monolingual) Turkish (monolingual)
Meeting deadlines, omitting no words, and observing writing principles and correct grammar
Account type
Freelance translator and/or interpreter
Data security
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Affiliations
This person is not affiliated with any business or Blue Board record at ProZ.com.
3 projects entered 1 positive feedback from outsourcers
Project Details
Project Summary
Corroboration
Translation Volume: 656 words Completed: Sep 2020 Languages: English to Farsi (Persian) English to Persian (Farsi)
The description of a combat game app into Persian
That was an amazing project for me because I had to be careful the translated text not to have more characters than the source, and it is somewhat difficult in Persian. However, I did it as I tried to translate the text in the best words.
Games / Video Games / Gaming / Casino
No comment.
Translation Volume: 44 words Completed: Aug 2020 Languages: English to Persian (Farsi) English to Farsi (Persian)
A small project about COVID-19
It was some additional words inserted in the main translated text.
Medical (general)
No comment.
Translation Volume: 8048 words Completed: Aug 2020 Languages: English to Farsi (Persian) English to Persian (Farsi)
QOwnNotes
I tried to provide one of my best translations to this great application. I hope this satisfies QOwnNotes and its Persian users.
English to Farsi (Persian): How to make interlocked nanocarbons General field: Science Detailed field: Chemistry; Chem Sci/Eng
Source text - English Interlocked nanocarbon rings have promising properties for molecular machines.
Carbon-rich materials such as fullerenes, carbon nanotubes, and graphene have a wide range of unusual physical properties resulting from their unique topography. For example, graphene, a two-dimensional sheet material consisting solely of carbon atoms, is a zero-gap semiconductor. When this same material is rolled into a cylindrical topology—a carbon nanotube—the resulting material can be either metallic or semiconducting,
depending on the specific atom connectivity. Many other molecular entities can be synthesized entirely from carbon. On page 272 of this issue, Segawa et al. report the synthesis of nanocarbons that are mechanically interlocked. These mechanically bound nanocarbons create a bridge between carbon nanoscience and research into molecular machines.
Segawa et al. created nanotube slices, that is, small fragments of a [12,12] armchair carbon nanotube called [12]cycloparaphenylene ([12]CPP). Initially described in 2008,
[n]CPPs consist of n benzene rings linked in the para position, resulting in a substantial amount of strain energy. To prepare these strained molecules, Segawa et al. used unstrained cyclohexadiene moieties that they then converted to benzenes in a late step of the synthesis.
The authors formed the key mechanical bond using a silicon-based template method, reminiscent of the original concept demonstrated by Sauvage and colleagues. In this method, a tetrahedral silicon atom is used to adjoin two neighboring CPP fragments in a crossing pattern. After dual macrocyclization, the silicon tether can be removed and the interlocked structure remains. Finally, reductive aromatization converts the cyclohexadiene units into the all-benzene structure. Expanding on this method, Segawa et al. also prepared a molecular trefoil knot, the simplest knot that can only be untied by cutting one of the strands. This synthetic approach does not require metal coordination or host-guest interactions and thus greatly expands the types of mechanically interlocked structures that can be synthesized.
At the nanoscale, molecular motion is less affected by forces that are common to typical macroscopic objects, such as gravity and momentum. In contrast, factors such as Brownian motion and viscosity dominate in the operation of synthetic molecular machines. The class of molecules known as mechanically interlocked molecules provides a way to overcome these challenges; thus, they are key building blocks of synthetic machines that operate on the molecular length scale, as envisioned by Richard Feynman.
The synthetic work of Segawa et al. differs from typical mechanically interlocked molecules in that the molecular composition of each molecule consists only of rigid, sp2-hybridized carbon atoms and edge hydrogen atoms. Their findings show that these interlocked carbon nanostructures have various distinctive chemical properties. For example, the molecular trefoil knot shows only a single proton resonance in the proton nuclear magnetic resonance (1H-NMR) spectrum. This is notable given that the molecular knot is composed of 24 individual benzene rings, each of which contains four protons.
The observation of a single resonance rather than 96 individual resonances indicates that the molecular trefoil knot undergoes ultrafast motion on the NMR time scale. This ultrafast motion occurs even at −95°C—a temperature that would be expected to greatly reduce the motion of any typical molecule. Isobe and colleagues recently reported a similar observation in a carbon-rich molecular bearing. Taken together, these studies suggest
that carbon-rich architectures may provide a platform to study frictionless motion at the nanoscale.
Beyond molecular motion, a particularly interesting consequence of interlocking molecules occurs in the case of [2]heterocatenane, in which [12]CPP and a smaller macrocycle, [9]CPP, are linked via a mechanical bond. Excitation of the [2]heterocatenane with light results in emission only from the [9]CPP macrocycle, implying energy transfer from [12]CPP to [9]CPP via the mechanical bond. In contrast, excitation of a solution containing both non-catenated [12]CPP and [9]CPP results in emission from each macrocycle. These optoelectronic properties, in combination with the mechanical stiffness of the structure, render these catenanes promising candidates for
use in new types of advanced sensing materials.
Many aspects of the electronic and optical behavior of these mixed catenane systems remain to be explored. Also, it is not yet clear through which mechanisms they can be switched. From a synthetic standpoint, the topological complexity can be furthered advanced, yielding interlocked structures made of three or more CPPs or even perhaps polymeric versions akin to molecular chain mail.
As the demand for miniaturized technology increases, the ability to shrink machines to the nanoscale represents a major challenge. The construction of mechanically interlocked molecules provides a strong foundation for addressing these challenges. As the work reported by Segawa et al. shows, it is the imagination and skill of synthetic chemists that
will continue to play a key role in developing new structural frameworks. The carbon-rich structures that they report will provide focus points for nanocarbon research and studies
of molecular machines.
Translation - Farsi (Persian) حلقه های نانوکربن همبند از ویژگی های امیدبخشی برای ماشین های مولکولی برخوردار هستند.
مواد غنی از کربن از قبیل ترکیبات فلورن، نانولوله های کربنی و گرافن دارای گستره وسیعی از ویژگی های غیرمعمول فیزیکی ناشی
از توپوگرافی منحصر به فردشان هستند. به عنوان مثال، گرافن، ماده ای با صفحه دو بعدی حاوی صرفاً اتم های کربن به عنوان یک
نیمه رسانای بدون شکاف می باشد. هنگامی که این نوع ماده به صورت یک توپولوژی لوله ای پیچ می خورد یک نانولوله کربنی
تشکیل می شود که بسته به اتصال ویژه اتمی می تواند فلزی یا نیمه رسانا باشد. بسیاری از دیگر ترکیبات مولکولی به طور کامل از
کربن قابلیت تشکیل دارند. در صفحه ٢٧٢ از این انتشار، سگاوا و همکارانش سنتز نانوذراتی را گزارش کرده اند که به طور مکانیکی
همبند هستند. نانوکربن ها که به طور مکانیکی به هم پیوند خورده اند، پلی میان علم نانوی کربن و تحقیق بر روی ماشین های
مولکولی به وجود می آورند.
سگاوا و همکارانش برش هایی از نانولوله را ایجاد کرده اند که در واقع قطعات کوچکی از یک نانولوله کربنی صندلی شکل
]1٢،1٢ ]موسوم به ]1٢ ]سیکلوپارافنیلن )CPP]12 )[هستند. در ابتدا براساس گزارشی در سال ٢٠٠٨ ،CPPs]n [در بردارنده
n حلقه بنزن است که از موقعیت پارا به یکدیگر متصل شده اند و حاصل آن مقدار قابل توجهی از انرژی کششی می باشد. سگاوا و
تیمش برای تشکیل این مولکول های تحت کشش از بخش های بدون کشش سیکلوهگزان بهره برده و سپس در مرحله پایانی سنتز
آنها را به بنزن تبدیل کرده اند.
دست اندرکاران این پروژه با استفاده از روش قالب مبتنی بر سیلیسیم، پیوند مکانیکی کلیدی شکل داده اند که یادآور مفهوم
اصلی آن است که توسط ساویج و همکارانش به اثبات رسیده است. در این روش، یک اتم سیلیسیوم چهار وجهی برای اتصال دو
قطعه CPP مجاور در یک الگوی متقاطع مورد استفاده قرار می گیرد. پس از درشت حلقه زایی دوگانه، مهار سیلیسیومی قابل
حذف بوده و ساختار همبند باقی می ماند. سرانجام، آروماتیک سازی کاهشی واحدهای سیکلوهگزان دی ان را به ساختار تماماً بنزنی
تبدیل می کند. سگاوا و گروهش نیز با توسعه این روش، گره سه پر مولکولی را به عنوان ساده ترین گره تهیه کرده اند که تنها با
برش یکی از رشته ها می تواند ناپیوسته شود. این روش سنتزی به کوئوردیناسیون فلز یا برهمکنش های میهمان و میزبان نیاز
نداشته و در نتیجه بسیاری از انواع ساختارهای همبند مکانیکی قابل سنتز را شرح می دهد.
در مقیاس نانو، حرکت مولکولی کمتر تحت تأثیر نیروهایی قرار می گیرد که برای اهداف عادی ماکروسکوپی مانند گرانش و
اندازه حرکت مرسوم هستند. در مقابل، عواملی از قبیل حرکت براونی و گرانروی بر عملکرد ماشین های مولکولی سنتزی چیره
می شوند. دسته ای از مولکول ها که به عنوان مولکول های همبند مکانیکی شناخته می شوند، روشی را برای غلبه بر این چالش ها
مطرح می کنند؛ بنابراین، همانگونه که ریچارد فاینمن تصور می کرد، آنها بلوک های ساختمانی کلیدی برای ماشین های سنتزی
هستند که در مقیاس طول مولکولی عمل می کنند.
کار سنتزی سگاوا و تیمش با مولکول های همبند مکانیک ی عادی متفاوت است که در آن ترکیب مولکولی هر مولکول صرفاً شامل
sp و اتم های هیدروژن کناری می شود. یافته های آنها نشان می دهد که این نانوساختارهای کربنی 2 اتم های صلب کربن با هیبرید
همبند ویژگی های شیمیایی متمایز و متنوعی دارند. برای مثال، گره سه پر مولکولی تنها یک رزونانس پروتون منفرد را در ط یف
1 رزونانس مغناط یسی هسته ای پروتون )NMR-H
( نشان می دهد. ذکر این نکته جالب است که گره مولکولی متشکل از ٢۴ حلقه
بنزن یگانه با چهار پروتون برای هر کدام از آنها می باشد. مشاهده یک رزونانس منفرد به جای ۹۶ رزونانس یگانه حاکی از آن است
که گره سه پر مولکولی دستخوش حرکت فوق سریع در مقیاس زمانی NMR قرار دارد. این حرکت فوق سریع حتی در C°۹5 -نیز
رخ می دهد یعنی دمایی که انتظار می رود حرکت هر مولکول عادی به شدت کاهش یابد. اخیراً ایزوبه و همکارانش مشاهده مشابهی
را در یاتاقان مولکولی غنی از کربن گزارش کرده اند. این مطالعات در کنار یکدیگر برآورد می کنند که معماری های غنی از کربن
می توانند پلتفرمی را برای بررسی حرکت بدون اصطکاک در مقیاس نانو فراهم کنند.
جدا از حرکت مولکولی، یک نتیجه جالب و ویژه از مولکول های همبند در مورد ]٢ ]هتروکاتنان روی می دهد که در آن
CPP[12 ]و یک درشت حلقه کوچکتر )CPP[9 )]از طریق پیوند مکانیک ی به یکدیگر متصل می شوند. برانگیختگی ]٢]
هتروکاتنان با نور، نشر را فقط از درشت حلقه CPP[9]CPP حاصل می آورد که منجر به انتقال انرژی از CPP[12 ]به
CPP[9 ]از طریق پیوند مکانیک ی می شود. در عین حال، تحریک محلولی متشکل از هم CPP[12 ]و هم CPP[9 ]غیرکاتنانی
موجب نشر از هر درشت حلقه می شود. این ویژگی های اپتوالکترونیک، در ترکیب با سختی مکانیک ی ساختار، این کاتنان ها را به
صورت گزینه های مناسبی برای استفاده در انواع جدید مواد پیشرفته حسگر در می آورد.
بسیاری از جوانب رفتار الکترونی و نوری این سیستم های مختلط کاتنانی در حال پژوهش باقی مانده اند. عالوه بر این، تاکنون
مشخص نشده است که آنها از طریق کدام مکانیسم ها می توانند سوئیچ شوند. از یک نقطه نظر سنتزی، این پیچیدگی توپولوژیکی
می تواند تداوم داشته باشد و ساختارهای همبندی را به بار آورد که از سه CPPs یا بیشتر یا حتی شاید نسخه های پلیمری وابسته
به زره زنجیر مولکولی تشکیل شده اند.
با افزایش تقاضا برای فناوری ریزسازی، توانایی کوچک سازی ماشین ها تا مقیاس نانو، بیانگر یک چالش جدی است. ساختمان
مولکول های همبند مکانیکی پایه مستحکمی برای برآورد این چالش ها در اختیار می گذارد. همانطور که پروژه گزارش شده توسط
سگاوا و دستیارانش نشان می دهد، این قوه تخیل و مهارت شیمیدانان سنتزی است که به ایفای نقشی کلیدی در توسعه چارچوب های
ساختاری جدید ادامه می دهند. ساختارهای غنی از کربن که آنها گزارش کرده اند، نقاط کانونی برای تحقیقات و بررسی های
نانوکربنی ماشین های مولکولی میسر می کنند.
English to Turkish: How to make interlocked nanocarbons General field: Science Detailed field: Chemistry; Chem Sci/Eng
Source text - English Interlocked nanocarbon rings have promising properties for molecular machines.
Carbon-rich materials such as fullerenes, carbon nanotubes, and graphene have a wide range of unusual physical properties resulting from their unique topography. For example, graphene, a two-dimensional sheet material consisting solely of carbon atoms, is a zero-gap semiconductor. When this same material is rolled into a cylindrical topology—a carbon nanotube—the resulting material can be either metallic or semiconducting,
depending on the specific atom connectivity. Many other molecular entities can be synthesized entirely from carbon. On page 272 of this issue, Segawa et al. report the synthesis of nanocarbons that are mechanically interlocked. These mechanically bound nanocarbons create a bridge between carbon nanoscience and research into molecular machines.
Segawa et al. created nanotube slices, that is, small fragments of a [12,12] armchair carbon nanotube called [12]cycloparaphenylene ([12]CPP). Initially described in 2008,
[n]CPPs consist of n benzene rings linked in the para position, resulting in a substantial amount of strain energy. To prepare these strained molecules, Segawa et al. used unstrained cyclohexadiene moieties that they then converted to benzenes in a late step of the synthesis.
The authors formed the key mechanical bond using a silicon-based template method, reminiscent of the original concept demonstrated by Sauvage and colleagues. In this method, a tetrahedral silicon atom is used to adjoin two neighboring CPP fragments in a crossing pattern. After dual macrocyclization, the silicon tether can be removed and the interlocked structure remains. Finally, reductive aromatization converts the cyclohexadiene units into the all-benzene structure. Expanding on this method, Segawa et al. also prepared a molecular trefoil knot, the simplest knot that can only be untied by cutting one of the strands. This synthetic approach does not require metal coordination or host-guest interactions and thus greatly expands the types of mechanically interlocked structures that can be synthesized.
At the nanoscale, molecular motion is less affected by forces that are common to typical macroscopic objects, such as gravity and momentum. In contrast, factors such as Brownian motion and viscosity dominate in the operation of synthetic molecular machines. The class of molecules known as mechanically interlocked molecules provides a way to overcome these challenges; thus, they are key building blocks of synthetic machines that operate on the molecular length scale, as envisioned by Richard Feynman.
The synthetic work of Segawa et al. differs from typical mechanically interlocked molecules in that the molecular composition of each molecule consists only of rigid, sp2-hybridized carbon atoms and edge hydrogen atoms. Their findings show that these interlocked carbon nanostructures have various distinctive chemical properties. For example, the molecular trefoil knot shows only a single proton resonance in the proton nuclear magnetic resonance (1H-NMR) spectrum. This is notable given that the molecular knot is composed of 24 individual benzene rings, each of which contains four protons.
The observation of a single resonance rather than 96 individual resonances indicates that the molecular trefoil knot undergoes ultrafast motion on the NMR time scale. This ultrafast motion occurs even at −95°C—a temperature that would be expected to greatly reduce the motion of any typical molecule. Isobe and colleagues recently reported a similar observation in a carbon-rich molecular bearing. Taken together, these studies suggest
that carbon-rich architectures may provide a platform to study frictionless motion at the nanoscale.
Beyond molecular motion, a particularly interesting consequence of interlocking molecules occurs in the case of [2]heterocatenane, in which [12]CPP and a smaller macrocycle, [9]CPP, are linked via a mechanical bond. Excitation of the [2]heterocatenane with light results in emission only from the [9]CPP macrocycle, implying energy transfer from [12]CPP to [9]CPP via the mechanical bond. In contrast, excitation of a solution containing both non-catenated [12]CPP and [9]CPP results in emission from each macrocycle. These optoelectronic properties, in combination with the mechanical stiffness of the structure, render these catenanes promising candidates for
use in new types of advanced sensing materials.
Many aspects of the electronic and optical behavior of these mixed catenane systems remain to be explored. Also, it is not yet clear through which mechanisms they can be switched. From a synthetic standpoint, the topological complexity can be furthered advanced, yielding interlocked structures made of three or more CPPs or even perhaps polymeric versions akin to molecular chain mail.
As the demand for miniaturized technology increases, the ability to shrink machines to the nanoscale represents a major challenge. The construction of mechanically interlocked molecules provides a strong foundation for addressing these challenges. As the work reported by Segawa et al. shows, it is the imagination and skill of synthetic chemists that
will continue to play a key role in developing new structural frameworks. The carbon-rich structures that they report will provide focus points for nanocarbon research and studies
of molecular machines.
Translation - Turkish Kilitli nano karbon halkaları molekülsel makineler için umut verici özelliklere
sahiptir.
Fulleren, karbon nanotüp ve grafen gibi karbondan zengin maddelerde eşsiz topoğrafyalarından kaynaklanan olağandışı fiziksel özellikler vardır. Örneğin, grafen, sadece karbon atomlarından oluşan iki boyutlu tabakayla bir madde, sıfır aralığı bir yarı iletkendir. Bu tür madde silindirsel bir topolojiye sarılırken (karbon nanotüp), ortaya çıkan madde, belirli atom bağlanabilirliğine bağlı ya metalik ya da yarı iletken olabilir. Daha başka molekülsel bileşikler tamamen karbondan sentezlenebilir. Segawa ve ark. bu basımın sayfa 272’sinde mekanik olarak kilitli nano karbonların sentezini rapor ettiler. Bu mekanik olarak bağlı nano karbonlar, karbon nanobilim ve molekülsel makineleri araştırma arasında bir köprü oluşturur.
Segawa ve ark. nanotüp dilimlerini yani [12]sikloparafenilen ([12]SPF) adlanan [12,12] koltuk karbon nanotüpün küçük parçalarını oluşturdular. İlk olarak 2008 yılında tanımlanarak, [n]SPF’ler para durumunda bağlanan n benzen halkalarından oluşarak şekil değiştirme enerjisinin varlıklı bir miktarını sonuçlar. Segawa ve ark. bu şekil değiştirmiş molekülleri yapmak için, şekil değiştirmemiş siklohegzadiyen paylarını kullanıp ardından sentezin son basamasında benzenlere dönüştürdüler.
Bu projenin yazarları, anahtar mekaniksel bağını Sauvage ve meslekdaşları ispatladığı özgün kavramı hatırlayan silikona dayalı bir şablon yöntemiyle yaptılar. Bu yöntemde, dörtyüzlü bir silikon atomu iki komşu SPF parçalarını bitiştirmek için kesişme bir desende kullanılır. Çifte makro siklizasyondan sonra, sınır silikon kaybolabilip kilitli yapı kalar. Son olarak, indirgeyici aromatizasyon siklohekzadien birimlerini tamamen benzen yapısına çevirir. Segawa ve ark. bu yöntemi genişlemek için molekülsel bir üçgül düğümü de anıkladılar ki sadece tellerin birinin kesilmesiyle bağsız olabilen en basit düğümdür. Bu sentetik yaklaşım metal koordinasyon ya da konuk-konukçu interaksiyonlara ihtiyaci yokdur ve böylece sentezlenen mekanik olarak kilitli yapıların türlerini oldukça genişledir.
Nano ölçeğinde, Molecülsel hareket, yerçekimi ve devinirlik gibi tipik makroskobik maddelere müşterek olan güçlerle daha az etkilenir. Sentetik molekülsel makinelerin işleminde Brown hareketi ve akmazlık baskını gibi etkenler şuna karşındır. Mekanik olarak kilitli molekül adlanan moleküllerin çeşidi bu zorlukları atlatmak üzere bir yöntem sağlar. Bu nedenle, onlar Richard Feynman düşündüğü gibi molekülsel boy ölçeğinde çalışan sentetik makinelerin anahtar yapım bloklarıdır.
Segawa ve arkadaşlarının sentetik işi özgün mekanik olarak kilitli moleküllerden farklıdır. Bu yapımlarda her molekülün molekülsel biletişimi sadece sert sp2-hibritli karbon atomları ve kenar hidrojen atomlarından oluşur. Onların bulguları bu kilitli karbon nano yapımlarında çeşitli ayırıcı kimyasal özellikler bulunduğunu gösterir. Örneğin, molekülsel üçgül düğümü sadece tek bir proton rezonansı proton nükleer manyetik rezonans (1H-NMR) spektrumunda gösterir. Molekülsel düğüm 24 bireysel benzen halkalarından bileşilir demektir. Bu halkaların her birisi dört protondan oluşur. 96 bireysel rezonanslarından ziyade tek bir rezonansın gözlemlenmesi, molekülsel üçgül NMR zaman ölçeğinde çok hızlı harekete geçirdiğini belirtmektedir. Bu çok hızlı hareket her özgün molekülün hareketini oldukça azaltmak için beklenen bir sıcaklıkta (−95°C) bile ortaya çıkar. Yakınlarda, Isobe ve meslektaşları karbondan zengin molekülsel bir yatakta benzer bir gözlem sundular. Bu araştırmalar birlikte karbondan zengin mimarlıkların nano ölçekte sürtünmesiz hareketi inceleyecek bir platformu sağlayabildiğini önermektedir.
Molekülsel harekete hariç, kilitli moleküllerin özel ilginç bir sonucu [2]heterokatenan’da ortaya çıkar. Bu bileşikte, [12]SPF ve daha küçük bir makro halka ([9]SPF) mekaniksel bir bağ vasıtasıyla bağlanmaktadır. [2]Heterokatenanın ışıkla uyarımı, sadece [9]SPF makro halkasından emisyon sonuçlar, mekaniksel bağ vasıtasıyla [12]SPF’den [9]SPF’ye enerji aktarımını ima eder. Buna rağmen, katenanınsız [12]SPF ve [9]SPF içeren bir çözeltinin uyarımı her makro halkadan emisyon sonuçlar. Bu optoelektronik özellikler, yapının mekaniksel sertliğiyle birlikte, bu katenanları ileri hissetme maddelerin yeni türlerinde kullanacak umut verici adayların haline getirir.
Bu karışık katenan sistemlerin elektronsal ve ışıksal davranışının çok yönleri incelenmektedir. Ayrıca, onlar hangi mekanizmaların yoluyla çevirilebildiğini hâlâ açıklanmaz. Sentetik görüş açısından, ilingesel karmaşıklığı devam edebilir, üç veya daha fazla SPF’lerden ya da belki molekülsel zincir zırhına bağlı polimerik sürümlerden bile yapılan kilitli yapıları ürün verir.
Kısaltılmış teknoloji için istek çoğalarak, nano ölçeğine dek makineleri küçültmek için yetenek ciddi bir sorunu ifade eder. Mekanik olarak kilitli moleküllerin yapımı bu sorunları adreslemeye güçlü bir esas sağlar. Segawa ve ark. sunduğu işte gösterdiği gibi, yeni yapısal çerçevelerin geliştirmesinde önemli bir rol oynamak için devam eden sentetik kimyacıların beceri ve hayal gücüdür. Onların sunduğu karbondan zengin yapılar, molekülsel makinelerin nano karbon araştırması ve çalışmalarları için odak noktaları sağlayacak.
Adobe Acrobat, Adobe Photoshop, MateCat, Microsoft Excel, Microsoft Office Pro, Microsoft Word, Powerpoint, ProZ.com Translation Center, SDL TRADOS, Smartcat
Bio
About me
I specialize in chemistry and I'm familiar with medical and natural science fields. However, I believe that I'm able to do any translating and editing job on the basis of my research skills to find the most specialized words from the deepest parts of the web.
My services and obligations
I'm dedicated to very best translating and proofreading your documents with a focus on meeting deadlines, omitting no words, and observing writing principles and correct grammar. I hope you trust me as much as I'm proud of offering my service to you.
My work experience
I'm also active in Smartcat. If you perform your projects on this platform, then it's my pleasure to:
This user has reported completing projects in the following job categories, language pairs, and fields.
Project History Summary
Total projects
3
With client feedback
1
Corroborated
1
100% positive (1 entry)
positive
1
neutral
0
negative
0
Job type
Translation
3
Language pairs
English to Persian (Farsi)
3
English to Farsi (Persian)
3
Specialty fields
Other fields
IT (Information Technology)
1
Medical (general)
1
Games / Video Games / Gaming / Casino
1
Keywords: English, Persian, Farsi, Turkish, Azerbaijani, Translation, Proofreading, Editing, English to Persian, Persian to English, English to Farsi, Farsi to English, English to Turkish, Turkish to English, English to Azerbaijani, Azerbaijani to English, Chemistry, Science, Technology, Industry, Medical, General, Persian translator, Farsi translator, Turkish translator, Azerbaijani translator, İngilizce çevirmeni, Azerice çevirmeni, Farsça çevirmeni, Kimya, Bilim, Teknologi, Endüstri, Tıp, Genel