**Mathematics problem**
Thread poster: Smith Park
| ** Smith Park ** South Korea Local time: 11:38 Member (2005) English to Korean
You have the group A which contains natural number, a, b, c, d, e and the group B which contains natural number, i, j, k, l, m (except 0 for both).
When the sum of group A elements is identical to the sum of group B elements and the product of group A elements is identical to the product of group B elements, is the group A (a, b, c, d, e) the group B (i, j, k, l, m)?
(abcde, ijklm)
[Edited at 2003-10-10 04:55] | | | ** Csaba Ban ** Hungary Local time: 05:08 Member (2002) English to Hungarian + ...
I assume that by \"natural numbers\" you mean positive integers and each of the two sets has five elements.
I have an idea how to prove it (indirectly):
You have to consider i, j, etc. as a sum of a+a\' , b+b\' , etc. (making such pairs that i is equal to or greater than a, j is equal to or greater than b, etc.) (a\' , b\' ... are either zeros or positive integers)
If the two sets are different, then at least one of a\' , b\' etc has to be other than zero.
You will have to then write down the product of these five elements (ab + ab\' + ac\' + ... + a\'b\' ... ).
You delete the products that appear on both sides of the equation (ab + ac + ad + ... de). All that remains is:
a\'b\' + a\'c\' + ... d\'e\' = 0
Since our precondition was that at least one of a\' , b\' ... is other than zero, those four products where the non-zero element is present have to be other than zero, hence their sum cannot be zero.
Indirectly we proved that all five of a\' , b\' ... have to be zero, i.e. the set of a, b, ... has to be identical with i, j, ...
Q.E.D
[ This Message was edited by: on 2002-12-11 11:15 ]
[ This Message was edited by: on 2002-12-11 11:16 ] | | | | | | ** Attila Piróth ** France Local time: 05:08 Member English to Hungarian + ... **Not necessarily.** | Dec 11, 2002 |
A = {a,b,c,d,e}
B = {i,j,k,l,m}
a+b+c+d+e = i+j+k+l+m
a.b.c.d.e = i.j.k.l.m,
where . denotes multiplication.
This does not imply that A and B should be indentical sets.
Consider the counterexample:
A = {3,3,10,n,n}
B = {2,5,9,n,n}
The sum of the elements of set A is 2n+16, the product is 90.n.n - just like for set B.
You can choose any n.
Of course,
A = {3,3,10,n,m}
B = {2,5,9,n,m}
works, and you can find infinitely many soultions. | | |
[ This Message was edited by: on 2002-12-11 22:36 ] | | | **Awww poop... I knew I was wrong** | Dec 11, 2002 |
excellent counterexample! | | | ** Indojin ** Local time: 08:38 English to Hindi + ...
a, b, c, d, e
are distinct numbers, i.e.,
abcde 0
where = is not equal to
and
i,j,k,l, m are also distinct numbers and
ijklm0
The order of the numbers does not matter.. but in this case do a,b,c,d,e and i,j,k,l,m have to be same???
What about the case when a,b,c,d,e are one-digit numbers? | | | ** Indojin ** Local time: 08:38 English to Hindi + ... **Found the flaw in Ban Csaba's proof** | Dec 13, 2002 |
I think the way you provew a,b,c,d,e have to be equal to i,j,k,l,m was very impressive. I was also pretty much sure of your proof.
But the flaw I think is in, when you assume that
i=a+a`
Here a` can be either positive or negative. It does not necessarily has to be positive.
When a` becomes negative, then in the case of equation -
a.b.c.d.e = (a+a`).(b+b`).(c+c`).(d+d`).(e+e`)
after cancelling the same terms on both sides, we get zero on LHS, but on the RHS, we can even get negative terms, since a` etc. can also be negative numbers.
Therefore, it is not necessary that a` etc. have to be zero.
Therefore, it is not necessary, that abcde and ijklm have to be equal.
I hope I am able to make myself clear.
Quote:
On 2002-12-11 10:52, Ban Csaba wrote:
I assume that by \"natural numbers\" you mean positive integers and each of the two sets has five elements.
I have an idea how to prove it (indirectly):
You have to consider i, j, etc. as a sum of a+a\' , b+b\' , etc. (making such pairs that i is equal to or greater than a, j is equal to or greater than b, etc.) (a\' , b\' ... are either zeros or positive integers)
If the two sets are different, then at least one of a\' , b\' etc has to be other than zero.
You will have to then write down the product of these five elements (ab + ab\' + ac\' + ... + a\'b\' ... ).
You delete the products that appear on both sides of the equation (ab + ac + ad + ... de). All that remains is:
a\'b\' + a\'c\' + ... d\'e\' = 0
Since our precondition was that at least one of a\' , b\' ... is other than zero, those four products where the non-zero element is present have to be other than zero, hence their sum cannot be zero.
Indirectly we proved that all five of a\' , b\' ... have to be zero, i.e. the set of a, b, ... has to be identical with i, j, ...
Q.E.D
[ This Message was edited by: on 2002-12-11 11:15 ]
[ This Message was edited by: on 2002-12-11 11:16 ]
[ This Message was edited by: on 2002-12-13 03:59 ]
| | | To report site rules violations or get help, contact a site moderator: You can also contact site staff by submitting a support request » **Mathematics problem** Advanced search SDL MultiTerm 2017 |
---|
**Guarantee a unified, consistent and high-quality translation with terminology software by the industry leaders.**
SDL MultiTerm 2017 allows translators to create one central location to store and manage multilingual terminology, and with SDL MultiTerm Extract 2017 you can automatically create term lists from your existing documentation to save time.
More info » |
| **PDF Translation - the Easy Way** |
---|
**TransPDF converts your PDFs to XLIFF ready for professional translation.**
TransPDF converts your PDFs to XLIFF ready for professional translation.
It also puts your translations back into the PDF to make new PDFs.
Quicker and more accurate than hand-editing PDF. Includes free use of Infix PDF Editor with your translated PDFs.
More info » |
| | | | | X **Sign in to your ProZ.com account...** | | | | | |